Attention-based residual autoencoder for video anomaly detection
نویسندگان
چکیده
Abstract Automatic anomaly detection is a crucial task in video surveillance system intensively used for public safety and others. The present adopts spatial branch temporal unified network that exploits both information effectively. has residual autoencoder architecture, consisting of deep convolutional neural network-based encoder multi-stage channel attention-based decoder, trained an unsupervised manner. shift method exploiting the feature, whereas contextual dependency extracted by attention modules. System performance evaluated using three standard benchmark datasets. Result suggests our outperforms state-of-the-art methods, achieving 97.4% UCSD Ped2, 86.7% CUHK Avenue, 73.6% ShanghaiTech dataset term Area Under Curve, respectively.
منابع مشابه
Variational Autoencoder based Anomaly Detection using Reconstruction Probability
We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...
متن کاملEnergy-based Models for Video Anomaly Detection
Automated detection of abnormalities in data has been studied in research area in recent years because of its diverse applications in practice including video surveillance, industrial damage detection and network intrusion detection. However, building an effective anomaly detection system is a non-trivial task since it requires to tackle challenging issues of the shortage of annotated data, ina...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملAnomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism
Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Intelligence
سال: 2022
ISSN: ['0924-669X', '1573-7497']
DOI: https://doi.org/10.1007/s10489-022-03613-1